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Spatial Landau damping in plasmas with three-dimensional k distributions
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The increase in linear Landau damping ink-distributed plasmas compared to thermal equilibrium
plasmas is studied by solving a boundary value problem for the spatially damped plasma waves
generated by a planar grid electrode with an applied time harmonic potential. Solutions are
computed for the plasma potential versus the distance from the electrode for different values of the
parameterk skappad. The velocity parameterv0 of the distribution function is chosen so that, as the
parameterk varies, the kinetic temperature of the plasma remains constant. The exact solutions of
this problem are also compared to approximate solutions derived from the theory of normal modes,
that is, from the roots of the dispersion relation. This model problem demonstrates the significant
increase in Landau damping by electrons which occurs for small values of the parameterk. © 2005
American Institute of Physics. fDOI: 10.1063/1.1885474g

I. INTRODUCTION

In space plasmas, ion and electron distribution functions
are usually observed to contain power law tails. This was
first discovered during early measurements of solar wind
electrons wherek distributions sdefined in Sec. IIId were
found to give a reasonable fit to the data.1,2 Linear Landau
damping by electrons is greater in plasmas having particle
distribution functions with power law tails than in plasmas at
thermal equilibrium because there are more resonant par-
ticles available at higher energies to participate in the damp-
ing process. The magnitude of this effect is of interest in
space physics wherek distributions are common and where
collisionless processes, such as Landau damping and other
wave-particle interactions, provide the primary means of
plasma relaxation and plasma energization. The purpose of
this paper is to compare the magnitude of Landau damping
in k and Maxwell distributed plasmas using a model problem
for which exact solutions can be analyzed in detail. Only
Landau damping by electrons shall be considered.

The problem is to compute the spatial damping of elec-
trostatic plasma waves generated by a plane electrode driven
by a time harmonic potential. Here, one is concerned with
spatial dampingsdamping in spaced rather than temporal
dampingsdamping in timed. As is well known, the damping
rates for the two types of damping are determined by the
roots of the plasma dispersion relationDsk,vd=0 where
Dsk,vd is the plasma dielectric function.3 The temporal
damping problem is given the most attention in the literature,
probably for historical reasons. But both types of damping
are important in applications.

In a spatially homogeneous plasma, the normal modes of
oscillation are characterized by a frequency and wave num-
ber determined by the roots of the dispersion relation
Dsk,vd=0. There are two separate classes of normal modes,
temporally damped normal modes,

fksx,td = Askdexphifkx− vskdtgj, s1d

which are useful for the solution of initial value problems,
and spatially damped normal modes,

fvsx,td = Asvdexphifksvdx − vtgj, s2d

which are useful for the solution of boundary value prob-
lems. In Eq.s1d, the wave numberk is any nonzero real
number and the complex angular frequencyvskd is deter-
mined by the plasma dispersion relation. In Eq.s2d, the fre-
quencyv is any nonzero real number and the complex wave
numberksvd is determined by the plasma dispersion relation.

For a planar electrode immersed in a plasma in the plane
x=0 and driven with an applied voltageVstd=f0 sinsvtd, the
solution for the electrostatic potential in the plasma is ex-
pected to take the form

fsx,td = − f0 sinskruxu − vtdexps− kiuxud, s3d

wherek=kr + iki is the unique root of the dispersion relation
with the smallest imaginary partsif it existsd, kr and ki are
both real and positive, andf0 is a constant. If a unique root
does not exist, as in the case of the Maxwell distribution,
then the “dominant” root of the dispersion relation must be
used insteadssee Sec. IXd. Equations3d is the solution sug-
gested by the theory of normal modes. Of course, the exact
solution depends on the physical boundary conditions. In this
paper, one possible set of boundary conditions is used to
develop an exact solution of the linearized Vlasov equation
and the result is compared to the normal mode solutions3d.

The significant increase of Landau damping in
k-distributed plasmas was first studied in the pioneering pa-
pers of Thorne and Summers,4 and Summers and Thorne.5

They solved the plasma dispersion relation for a
k-distributed, unmagnetized plasma, and computed the
damping rate as a function of the real wave numberk for
different values ofk skappad. The results were then com-
pared to the thermal equilibrium values. Analysis of colli-
sionless damping rates and the growth rates of various insta-
bilities in both magnetized and unmagnetized plasmas haveadElectronic mail: jpodesta@solar.stanford.edu
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since been carried out for various hybrid combinations ofk
and Maxwell distribution functions. Because it is impractical
to mention all of the many references, just a few shall be
cited here.6–11The work described in Refs. 6–11 and in many
related papers is important because of its wide range of ap-
plications in space physics.

The outline of this paper is as follows. The boundary
value problem for the dynamic shielding of a time harmonic
sheet charge is derived in Sec. II and its relationship to the
problem of an electrode with an oscillating potential is de-
scribed. Section III provides the definition of thek distribu-
tion function and its statistical moments. In Sec. IV, the
plasma dispersion function for thek distribution is derived in
such a way that the plasma dielectric function takes the same
form as for the Maxwell distribution. The plasma dispersion
relation for spatial damping is described in Sec. V. In Sec.
VI, the solutions for static Debye shielding are briefly men-
tioned. In Sec. VII, the solution of the dynamic shielding
problem is decomposed into near-field and far-field compo-
nents and the solution is thereby obtained for an electrode
with an oscillating potential. In Sec. VIII, the exact solution
for the plasma potential is computed for different values ofk
and, in Sec. IX, the results are compared to the normal mode
solution s3d.

II. BOUNDARY VALUE PROBLEM
FOR DYNAMIC DEBYE SHIELDING

The plasma waves generated by an electrode with an
oscillating potential can be obtained from the solution of a
related problem. Consider the dynamic screening due to a
sheet charge in the planex=0 with a time harmonic charge
density of the formrsx,td=r0dsxdcossvtd, wherer0 is the
surface charge densitysa constantd anddsxd is the Dirac delta
function. It will be shown that the solution of this problem
contains two components, a far-field electric field of the form

EFsx,td =
r0

2e0f1 − svp
2/v2dg

sgnsxdcossvtd, s4d

where sgnsxd is the algebraic sign ofx, plus a near-field
component consisting of spatially damped plasma waves that
propagate away from the source. The near-field component is
a solution of the linearized Vlasov equations with the prop-
erty that the potential approachesf0 sinsvtd as x→0 and
vanishes asuxu→`. Thus, this is the solution of interest, that
is, this is the field generated by an electrode with an oscil-
lating potential. The complete solution is derived as follows.

By symmetry, ] /]y=] /]z=0. Thus, the waves will
propagate along thex direction. At high frequencies, the mo-
tion of the ions is negligible due to their much larger mass.
The ions simply provide a uniform background of positive
charge which preserves overall charge neutrality. Assuming
that the magnitude of the forcing is sufficiently small, the
response of the plasma is governed by the linearized Vlasov
equations

]f

]t
+ v

]f

]x
−

eE

m

]f0

]v
= 0, s5d

]E

]x
= −

n0e

e0
E fdv +

r0

e0
dsxdcossvtd, s6d

where f and E are the perturbed electron distribution func-
tion and electric field, respectively. The variablev is the x
component of the velocity, that is,vx, and the dependence on
the velocity componentsvy and vz has been integrated out.
The full distribution function isn0ff0svd+ fsx,v ,tdg wheren0

is the equilibrium density andef0dv=1. In Eqs.s5d ands6d,
e.0 is the electron charge,m is the electron mass,E is the
x component of the electric field,e0 is the permittivity of free
space,r0 is the surface charge density,dsxd is the delta func-
tion, andvù0 is the driving frequency. Standard SI units are
used throughout.

The right-hand side of Eq.s6d consists of two terms, the
first representing the charge density of the plasma and, the
second, the “externally imposed” charge density. The source
term is an oscillating sheet charge with a charge density
r0 cossvtd which acts as a field generator or generator of
plasma waves. For a static charge distributionv=0 and, as
indicated below, the solution for the field is proportional to
exps−uxu /ld wherel is the Debye length. Thus, the Eqs.s5d
and s6d include the special case of static Debye shielding.

As first shown by Landau,12 the physically correct solu-
tion of Eqs.s5d and s6d is obtained by applying the Fourier
transform in space and the Laplace transform in time. Only
the steady state solution is of interest here, that is, the time
asymptotic solution ast→`. This can be derived from the
full Fourier and Laplace transformed solutions as shown, for
example, by Krall and Trivelpiece3 and in other well-known
textbooks.13,14

Alternatively, the result for the steady state solution can
be obtained directly from Eqs.s5d and s6d by assuming a
harmonic time dependence of the form exps−ivtd wherev
contains a positive imaginary partsvanishingly smalld which
is allowed to approach zero at the end of the calculation. This
approach ensures causality. Thus, the steady state solution is
written as

Esx,td = RefẼsx,vde−ivtg, s7d

whereẼ is the complex amplitude. Hereafter, a tilde over any
quantity denotes its complex amplitude. Note that the in-
phase and quadrature components ofEsx,td, that is, the com-
ponents proportional to cossvtd and sinsvtd are given by the

real and imaginary parts ofẼsx,vd, respectively.
Adopting the ansatzs7d, together with a similar ansatz

for fsx,v ,td, and then taking the Fourier transformswith re-
spect toxd of Eqs.s5d and s6d, one finds

s− iv + ikvd f̃sk,v,vd =
e

m
Ẽsk,vd

]f0

]v
, s8d

ikẼ = −
n0e

e0
E f̃dv +

r0

e0
. s9d

Solving Eq.s8d for f̃ and then substituting the result into Eq.
s9d, one finds the solutions
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f̃sk,v,vd = S e

ikm
D f08svd

v − sv/kd
Ẽsk,vd, s10d

Ẽsk,vd =
r0

ike0Dsk,vd
, s11d

wheref08svd=]f0/]v is the derivative off0svd with respect to
v andDsk,vd is the plasma dielectric function. The plasma
dielectric function is defined by

Dsk,vd = 1 −
vp

2

k2E
−`

` f08svd
v − sv/kd

dv, Imsvd . 0, s12d

wherevp
2=n0e

2/e0me is the electron plasma frequency. After
an integration by parts, the plasma dielectric function can be
written in the equivalent form

Dsk,vd = 1 −
vp

2

k2E
−`

` f0svd
sv − v/kd2dv, Imsvd . 0, s13d

or, making the change of variablesv8=kv / uku,

Dsk,vd = 1 −
vp

2

k2E
−`

` f0skv/ukud
sv − v/ukud2dv, Imsvd . 0. s14d

This last change of variables is permitted because the Fourier
transform variablek is real, that is, Imskd=0. Equations14d
shows that iff0svd is an even function ofv, that is, there is
no equilibrium current flowing in the plasma, thenDsk,vd is
an even function ofk. This is the case for all the plasmas
studied here.

The fact thatDsk,vd is an even function ofk implies
that the inverse Fourier transform of Eq.s11d can be written
as

Ẽsx,vd =
r0

pe0
E

0

` sinskxd
kDsk,vd

dk. s15d

This is the solution of the dynamic screening problem first
obtained by Buckley15 in 1968. The keen observer may note
that Eq.s11d contains a pole atk=0 while Eq.s15d does not.
To see this, note thatDsk,vd is a continuous function ofk as
k approaches zero along the real axis and thatDs0,vd is
nonzerofsee Eq.s37dg. Therefore, the integrand in Eq.s15d is
continuous atk=0. If the inverse Fourier transform of Eq.
s11d is written as

Ẽsx,vd =
r0

2pe0
FE

−`

` cosskxd
ikDskd

dk+ iE
−`

` sinskxd
ikDskd

dkG , s16d

then the first integral on the right-hand side contains the pole
and the second integral, which is nonsingular, yields Eq.
s15d. The first integral on the right-hand side of Eq.s16d can
be defined as the Cauchy principal value, in which case it
equals zero by symmetry. A mathematically rigorous proof of
Eq. s15d must be based on the theory of distributions because
the source term in Eq.s6d contains a delta function. This is
discussed further in the Appendix.

The next step in the solution of the physics problem at
hand is to separate the electric fields15d into near-field and
far-field components. First, however, it is necessary to com-
pute the plasma dispersion function.

III. THREE-DIMENSIONAL k DISTRIBUTION

In astrophysics and space physics, the isotropick distri-
bution in three dimensions is usually defined by

fksvd = AkS1 +
v2

kv0
2D−sk+1d

, k . 1/2, s17d

where v=svx,vy,vzd is the velocity vector, v=svx
2+vy

2

+vz
2d1/2, andv0 is some characteristic velocity.1,4 The normal-

ization constant is

Ak =
1

spv0
2d3/2Îk

·
Gskd

Gsk − 1/2d
s18d

and is chosen such that

4pE
0

`

fksvdv2dv = 1. s19d

The conditionk.1/2 is necessary for this integral to con-
verge. Thek distribution is closely related to theb distribu-
tion. In fact, theb function arises when computing the nor-
malization factorAk and the statistical moments offk. In the
limit as k→`, thek distribution approaches the well-known

Maxwell distributione−v2/v0
2
, including the correct normaliza-

tion.
The velocity moments of thek distribution are given by

kvnl =
2

Îp
skv0

2dn/2

GSn + 3

2
DGSk −

n + 1

2
D

GSk −
1

2
D , s20d

wheren is an integer and 0ønø2sk−1d. For an arbitrary
real powernù0, kvnl is finite if and only if n,2k−1. In
applications, the kinetic temperature of an isotropick distri-
bution is defined by the relation

1

2
mkv2l =

3

2
kBT, s21d

which, using Eq.s20d, implies

v0
2 = S2k − 3

k
DkBT

m
, s22d

wherekB is Boltzmann’s constant. The second momentkv2l
is finite if and only if k.3/2. The family of allk distribu-
tions at the same absolute temperatureT is obtained by sub-
stituting v0

2=v0
2skd from Eq. s22d into Eq. s17d. Only distri-

butions withk.3/2 are allowed.

IV. PLASMA DISPERSION FUNCTION

Integrating the three-dimensionalk distribution s17d
over vy andvz, one finds the reduced distribution function

052101-3 Spatial Landau damping in plasmas… Phys. Plasmas 12, 052101 ~2005!
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fksvd = pv0
2AkF1 +

v2

kv0
2G−k

, k . 3/2, s23d

wherev=vx. It should be noted that the definition ofv used
here,v=vx, is different from the definition ofv used in the
last section. The plasma dielectric function is obtained by
substituting Eq.s23d into Eq. s14d. This yields

Dsk,vd = 1 −
vp

2

k2v0
2Zk8S v

ukuv0
D , s24d

where, for Imsjd.0,

Zksjd =
1

Îpk

Gskd
Gsk − 1/2dE−`

` 1

sv − jds1 + v2/kdkdv s25d

is the plasma dispersion function for thek distribution and
Z8sjd=dZ/dj. For Imsjdø0, the functionZksjd is defined by
analytic continuation. In the limit ask→`, the function
Zksjd approaches the limit

Zsjd =
1

Îp
E

−`

` e−v2

v − j
dv, Imsjd . 0, s26d

which is the well-known plasma dispersion function for the
Maxwell distribution. Thus the dispersion functions25d for
the isotropick distribution generalizes the well-known result
s26d for the isotropic Maxwell distribution.

The dispersion functions25d was derived by Hellberg
and Mace10 fsee Eq.s10d in Ref. 9g who denote this function
by ZkMsjd. Independently, the same function was derived in
an unpublished work by Podesta16 who denotes the function
by Zksjd. The latter notation shall be followed here. The
plasma dielectric function for thek distribution was given in
the forms24d by Hellberg and Macefsee Eq.s61d in Ref. 9g
and, independently, it was given in the same form by
Podesta.16 It should be noted that the plasma dispersion func-
tion s25d is different from the functionZk

* sjd defined in an
earlier work by Summers and Thorne,17 a definition also
adopted by Mace and Hellberg.18 These pioneering papers
employ an exponentk+1 rather thank in the integrand.
Consequently, the functionZk

* sjd of Summers and Thorne17

is more closely related to the derivativeZk8sjd of the function
defined by Eq.s25d. The definitions25d is convenient be-
cause it preserves the well-known forms24d for the plasma
dielectric function.14

For integer values,k=n, the integral s25d is readily
evaluated using the calculus of residues with the result

Znsjd = i
sn − 1/2d

n1/2

Gsnd
Gs2nd o

m=0

n−1
Gsm+ nd

m!
S1 − iz

2
Dm−n

, s27d

wherez=j /În. The results for the first few values ofn are
listed in Table I. For arbitrary real values of the parameterk,
a simple way to evaluate the integrals25d is to first derive a
differential equation for it and then express the solution in
terms of a hypergeometric function. This is the approach
developed by Podesta.16 Another approach is to use the
theory of contour integration. This is the original approach
adopted by Mace and Hellberg.18 Once it is expressed in
terms of Gauss’ hypergeometric function, the well-
documented properties of the hypergeometric function can
be applied to derive many useful properties of the plasma
dispersion function. This program was carried out by
Podesta.16

V. DISPERSION RELATION FOR SPATIAL DAMPING

The dielectric functions24d has been defined fork real
and v complex. To obtain the dispersion relation for the
spatial damping problem it is necessary to extend the defini-
tion of Dsk,vd to the case wherev is real andk is complex.
A description of this procedure is included here for com-
pleteness, however, the advanced reader may skip this sec-
tion if desired.

The integral in Eq.s12d actually defines two different
analytic functions depending on whetherk.0 or k,0. This
is because the integral is discontinuous as the complex vari-
ablej=v /k crosses the real axis. For example, for the Max-
well distribution,

1
Îp
E

−`

` e−v2

v − j
dv =HZsjd, Imsjd . 0

Zsjd − 2Îpie−z2
, Imsjd , 0J ,

s28d

where the functionZsjd is defined throughout the complex
plane by analytic continuation.

To take this into account, consider the function

D+sk,vd = 1 −
vp

2

k2v0
2Zk8S v

kv0
D , s29d

wherek.0 is real and positive,v is any complex number,
and, as always,Zksjd is defined throughout the complex
plane by the analytic continuation of Eq.s25d. If v is a fixed
real number, then Eq.s29d defines a unique analytic function
of k which reduces to the functionDsk,vd defined in Eq.

TABLE I. Plasma dispersion function and dielectric function for the first few integer values ofk. For an isothermal family ofk distributions,k.3/2 andv0

should everywhere be replaced byv0skd defined by Eq.s21d.

k Zksjd z Dsk,vd=1−svp
2/k2v0

2dZk8sj=v / ukuv0d

1 is1−izd−1 z=j 1+svp
2/k2v0

2ds1−izd−2

2 si /Î2dfs1−izd−2+s1−izd−1g z=j /Î2 1+svp
2/2k2v0

2df2s1−izd−3+s1−izd−2g
3 si /3Î3df2s1−izd−3+3s1−izd−2+3s1−izd−1g z=j /Î3 1+svp

2/3k2v0
2df2s1−izd−4+2s1−izd−3+s1−izd−2g

4 si /10df2s1−izd−4+4s1−izd−3g
f+5s1−izd−2+5s1−izd−1g

z=j /2 1+svp
2/20k2v0

2df8s1−izd−5+12s1−izd−4g
f+10s1−izd−3+5s1−izd−2g

052101-4 J. J. Podesta Phys. Plasmas 12, 052101 ~2005!
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s24d whenk is real and positive. Likewise, consider the func-
tion

D−sk,vd = 1 −
vp

2

k2v0
2Zk8S− v

kv0
D , s30d

wherek,0 is real and negative andv is any complex num-
ber. If v is a fixed real number, then this defines a unique
analytic function ofk which reduces to the functionDsk,vd
in Eq. s24d whenk is real and negative.

The two functionsD+ and D− are different except that
along the real axisD+sk,vd=D−s−k,vd, k.0, so that, as
discussed previously,Dsk,vd in Eq. s24d is an even function
of k. Moreover, from the definitionss29d ands30d, it is clear
that for any complex value ofk the two functions are related
by D+sk,vd=D−s−k,vd.

It is logical to define

Dsk,vd = HD+sk,vd, Reskd . 0

D−sk,vd, Reskd , 0
J . s31d

This yields a unique analytic continuation ofDsk,vd into the
complexk plane such that the dispersion relation for spatial
Landau damping takes the formDsk,vd=0. For v.0, the
componentD+ is associated with waves that propagate from
left to right andD− is associated with waves that propagate
from right to left. It is important to note, however, that the
function defined by Eq.s31d is discontinuous across the
imaginary axis in the complexk plane.

VI. SOLUTION FOR STATIC DEBYE SHIELDING

In this section it is shown that in the low frequency limit
v→0 the solution of the boundary value problem defined by
Eqs.s5d ands6d reduces to the well-known solution for static
Debye shielding. By inspection, the solutions11d for the
electric field is primarily determined by the properties of the
plasma dielectric functions24d. In the low frequency limit
v=0, the relation

Zk8s0d = − S2k − 1

k
D s32d

for the derivative of the plasma dispersion function16 may be
substituted into Eq.s24d to obtain

Dsk,v = 0d = 1 +
vp

2

k2v0
2S2k − 1

k
D ; 1 +

1

sklkd2 , s33d

where, by definition,lk is the Debye length.19 Thus, the
potential due to a static sheet charge decays like exps
−uxu /lkd where the Debye length for ak-distributed plasma
is given by

lk =
v0

vp
S k

2k − 1
D1/2

= S2k − 3

2k − 1
D1/2

lD. s34d

Here, the last equality on the right-hand side holds for an
isothermal family of k distributions and lD

=se0kBT/n0e
2d1/2 is the Debye length for the Maxwell distri-

bution. In general, the Debye length for ak distribution is
less than but close to that of a Maxwell distribution as long
as k is not too close to 3/2. Fork=2, one findslk /lD

.0.577 withlk /lD increasing to 1 ask→`. More informa-
tion about the Debye length ink-distributed plasmas can be
found in the study by Bryant.19

VII. SEPARATION OF THE NEAR-FIELD
AND FAR-FIELD COMPONENTS

If uxu is very large, then the integrand in Eq.s15d is
rapidly oscillating and the dominant contribution to the inte-
gral occurs neark=0. To see this, write the integral in Eq.
s15d in the form

E
0

` sinskxd
kDsk,vd

dk= sgnsxdE
0

` sinsud
uDsu/uxu,vd

du, s35d

whereuxu is large and sgnsxd denotes the algebraic sign ofx.
In the neighborhood ofk=0, the functionDsk,vd is approxi-
mately constant so that it can be removed from the integral
with the result

E
0

` sinsud
uDsu/uxu,vd

du.
p

2Ds0,vd
. s36d

Using the asymptotic series or the closed form expressions
for the plasma dispersion function, it follows that, for real
values ofk,

Dsk,vd . 1 −
vp

2

v2 ask → 0. s37d

Therefore, the far-field component of the electric fields15d is
given by

ẼFsx,vd =
r0

2e0f1 − svp
2/v2dg

sgnsxd. s38d

In the absence of the plasma, the electric field due to the
sheet charge issr0/2e0dsgnsxd. In the presence of the plasma
the electric field at large distancess38d is modified by the
long-wave-number dielectric function 1−svp

2/v2d. This be-
havior was found by Landau12 in his solution of the spatial
damping problem and also by Buckley15 in his solutionesxd
of the dynamic screening problem.

Writing the total electric fields11d in the form E=EN

+EF, one finds for the near-field component

ẼNsk,vd =
r0

ike0
F 1

Dsk,vd
−

1

1 − svp
2/v2dG . s39d

The near field has the important property that it is regular at
k=0, that is, it behaves like a positive integral power ofk as
k→0 and, therefore, the electrostatic potentialf̃sk,vd=

−ẼNsk,vd / ik is well behaved neark=0. As a consequence,
the potential vanishes asuxu→`. To prove this, write the
inverse Fourier transform of the potentialf̃sk,vd as a cosine
transform, which is possible sinceDsk,vd is an even func-
tion of k, and then integrate once by parts.

As discussed in Sec. II, the plasma waves generated by
an electrode with an oscillating potential are described by the
near-field solutions39d. Hence, the desired solution of the
original boundary value problem is given by
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f̃sk,vd =
r0

k2e0
F 1

Dsk,vd
−

1

1 − svp
2/v2dG , s40d

whereDsk,vd is given by Eq.s24d. If the removal of the far
field somehow seems arbitrary, note that, in practice, one
may eliminate the far field by introducing a second electrode
with an equal and opposite charge, thereby forming a capaci-
tor. The field exterior to the capacitor is then given by Eq.
s40d. The inverse Fourier transform of Eq.s40d yields

f̃sx,vd =
r0

pe0
E

0

` F 1

Dsk,vd
−

1

1 − svp
2/v2dGcosskxd

k2 dk,

s41d

where the exact expression forDsk,vd is given by Eq.s24d.
This integral converges because the quantity in square brack-
ets obeys the asymptotic relationsf¯g,k2 as k→0 and
f¯g,1 ask→`. In the following section, the Fourier inte-
gral s41d is computed numerically.

VIII. SOLUTIONS FOR THE ELECTROSTATIC
POTENTIAL

In general, the solutions behave differently depending on
whether the driving frequency is greater or less than the
plasma frequency. Below the plasma frequency, when
v /vp,1, the solutions are rapidly damped within a few De-

bye lengths of the source. These solutions are of no interest
here and are discussed in detail by Buckley.15 When v /vp

.1, electrostatic plasma waves are excited in the planex
=0 and undergo spatial Landau damping as they propagate
away from the source. The damping increases as the param-
eter v /vp is increased. Asv /vp→1+, the wavelength ap-
proaches infinity and the damping approaches zero; this is
the long-wavelength limit.

The exact solution for the potentialfsx,td is obtained by
computing the inverse Fourier transform of Eq.s40d using
the fast Fourier transformsFFTd algorithm. The dielectric
function Dsk,vd is computed using the closed form expres-
sions in Table I or, for the Maxwell distribution, by using the
very accurate and efficient numerical algorithm developed by
Gautschi.20 All calculations are performed using the dimen-
sionless variablesv8=v /vp and k8=klD where the Debye
lengthlD is defined in Sec. VI. In addition, all the distribu-
tion functions are characterized by the same absolute tem-
peratureT. The results for the in-phase and quadrature com-
ponents offsx,td are plotted in Fig. 1 for the casesv /vp

=1.1 andv /vp=1.2. The solutions are even functions ofx so
only the regionx.0 is shown in the figure.

The results shown in Fig. 1 clearly illustrate the depen-
dence of the damping onk. As k decreases, the particle
population in the high energy tails increases and, conse-
quently, the damping increases because there are more reso-

FIG. 1. Solution for the in-phase
ssolidd and quadrature components
sdottedd of the potentialfsx,td com-
puted from Eq.s41d at the frequencies
v /vp=1.1 sleftd and v /vp=1.2
srightd. From top to bottom, results are
shown for k-distributed plasmas with
parametersk=` sMaxwell distribu-
tiond, k=4, andk=2, respectively.
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nant particles available to participate in the damping process.
Landau damping is strongest for small values ofk, such as
k=2, 3, or 4. For moderate to large values ofk, the damping
approaches the thermal equilibrium value. In space plasmas,
such as the solar wind and the magnetosphere,1,2,21–23obser-
vations typically yield values ranging fromk=3 to k=6.

IX. APPROXIMATE SOLUTIONS

It is of interest to compare the exact solutions discussed
in the last section with the solutions suggested by the theory
of normal modes, namely,

ẼN
approxsx,vd = E0 expfiskr + ikiduxugsgnsxd s42d

and

f̃approxsx,vd = f0 expfiskr + ikiduxug, s43d

where E0 and f0 are constants andksvd=kr + iki, with kr

.0 andki .0, is the dominant root of the dispersion rela-
tion. For ak distribution with integer values ofk there exists
a unique root of the dispersion relation with the smallest
imaginary part, the least damped root, which is the “domi-
nant root” in this case. For the Maxwell distribution the dis-
persion relation possesses an infinite number of roots with
decreasing imaginary part so there is no “least damped” root
in this case. A contour plot showing the locations of the roots
in the first quadrant is shown in Fig. 2. The dominant root in
this case is the one furthest to the right in Fig. 2 and is such
that the function 1/uDsk,vdu has a pole at this point with a
very broad peak. The other roots have poles with succes-
sively narrower peaks. The fact that the solution of the spa-
tial damping problem is dominated by this one root has been
noted previously by Gould24 and by Buckley.15

The values of the coefficientsE0 andf0 in Eqs.s42d and
s43d cannot be determined from the dispersion relation, how-

ever, they can be estimated from the exact solutionss15d and
s41d. The limit of Eq.s15d asx→0 is obtained by using the
limit Dsk,vd→1 ask→`, which implies

Ẽsx,vd =
r0

2e0
sgnsxd asx → 0. s44d

Subtracting the far-fields38d from the total fields44d, one
obtains the near-field

ẼNsx,vd = −
r0

2e0
S vp

2

v2 − vp
2Dsgnsxd asx → 0, s45d

which implies

E0 = −
r0

2e0
S vp

2

v2 − vp
2D . s46d

Now proceed to the evaluation off0. In the limit asx→0,
Eq. s41d yields

f̃sx = 0,vd =
r0

pe0
E

0

` F 1

Dsk,vd
−

1

1 − svp
2/v2dGdk

k2 . s47d

This integral must be computed numerically. For reasons that
are not immediately obvious, the real part of Eq.s47d is zero,
at least, for the cases considered here. As a consequence, the
potential and the electric field are out of phase byp /2 rad.
Using a standard numerical integration routine to evaluate
the integral in Eq.s47d, one finds that forv /vp=1.1,

f0 .
r0lD

e0
3 5− 7.65i for k = 2

− 8.56i for k = 4

− 8.75i for k = `.
6 s48d

Substituting these values into Eq.s43d, multiplying by e−ivt,
and then taking the real part, one finds

fapproxsx,td = uf0usinskruxu − vtdexps− kiuxud. s49d

To complete the solution it is necessary to find the roots of
the dispersion relation.

For k=2, the dispersion relation from Table I may be
written as

1 −
vp

2

v2s− izd2f2s1 − izd−3 + s1 − izd−2g = 0, s50d

where z=v /Î2kv0 or, equivalently, z=sv /vpd /klD. By
omitting the absolute value signs onk, this becomes the
equationD+sk,vd=0 discussed in Sec. V. Making the change
of variable z= iy followed by x=s1+yd−1, one obtains the
equation

2x3 − 3x2 =
v2

vp
2 − 1. s51d

If v.vp, then, by Descarte’s rule of signs, this equation has
one positive real root. Using Newtons method with the initial
guess x=3/2, one finds, for v /vp=1.1, the root x
=1.544 04. . .. Using this root to factor the polynomials51d,
the remaining roots are then given by the quadratic formula
with the resultklD= ±0.257+0.0890i.

FIG. 2. Contour plot showing the poles of 1/uD+sk,vdu for the Maxwellian
dispersion relation in the casev /vpe=1.1. The dominant pole is the one
furthest to the right. A pole atklD.1.62i having a width comparable to the
dominant pole is a purely damped mode and is not shown on this plot.
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For k=4, the dispersion relation from Table I may be
written as

1 +
vp

2

5v2z2f8s1 − izd−5 + 12s1 − izd−4 + 10s1 − izd−3

+ 5s1 − izd−2g = 0, s52d

where z=v /2kv0 or, equivalently,z=sv /vpd /Î5klD. The
roots are found using Newton’s method once an approximate
root is obtained by first plotting the function 1/uDsk,vdu in
the complexk plane. Forv /vp=1.1, this procedure yields
the rootklD=0.233+i0.0251.

For k=`, the dispersion relation for the Maxwell distri-
bution may be written as

Dsk,vd = 1 −
vp

2

v2j2Z8sjd = 0, s53d

wherej=v /kv0 or, equivalently,j=sv /vpd /Î2klD. The par-
tial derivative ofD with respect tok is computed using the
differentation formula forZsjd and then the roots ofs53d are
computed using Newton’s method. An approximate root is
obtained by first plotting the function 1/uDsk,vdu in the com-
plex k plane. Forv /vp=1.1, this procedure yields the root
klD=0.244+i0.001 68.

Using the roots of the dispersion relation just obtained,
the approximate solutionss49d at the driving frequency
v /vp=1.1 take the form

fsx,td .
r0

e0lD
s7.65dsins0.257uxu − vtdexps− 0.089uxud

s54d

for k=2,

fsx,td .
r0

e0lD
s8.56dsins0.233uxu − vtdexps− 0.025uxud

s55d

for k=4, and

fsx,td .
r0

e0lD
s7.75dsins0.244uxu − vtdexps− 0.00168uxud

s56d

for k=`. Here, the distancex is in units of lD. The exact
solutions obtained from Eq.s41d and the approximate solu-
tions s54d–s56d are compared in Fig. 3. As can be seen from
Fig. 3, the normal mode solutions provide a reasonably good
fit to the exact solutions. It should be mentioned that the
amplitude in Eq.s56d has been reduced from 8.75, the true
value of the potential atx=0, to the value 7.75 in order to

FIG. 3. Comparison between the exact
solutionsssolidd and the approximate
solutions sdashedd for the in-phase
sleft columnd and quadrature compo-
nents sright columnd of the potential
fsx,td. From top to bottom, results are
shown for k-distributed plasmas with
parametersk=` sMaxwell distribu-
tiond, k=4, andk=2, respectively. The
driving frequency isv /vp=1.1.
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give a better fit to the exact solution. This adjustment is
necessary because for the Maxwell distribution there is a
rapidly damped component of the solution which is not in-
cluded in the one term approximations49d. It should be kept
in mind that the goal of the normal mode approximation is
only to obtain the real and imaginary parts of the wave num-
ber, not the wave amplitudesthe amplitude cannot be in-
ferred from the dispersion relationd. With this caveat, the
results of this section show that the normal mode solutions
yield a reasonably good approximation to the exact solutions.

X. DISCUSSION

The boundary value problem for a transparent grid elec-
trode with an oscillating sheet charge is closely related to the
boundary value problem studied by Gould.24 Gould studied
the excitation of plasma waves by a pair of two closely
spaced grid electrodes, a dipole layer. It is interesting that the
electrostatic potential due to an oscillating dipole layer is
identical to the electric field of an oscillating sheet charge.
Therefore, the boundary value problem studied in this paper
is similar in many respects to the problem studied by Gould.

Consider a dipole layer with charge density

r̃sx,vd =
s0

2
fdsx + hd − dsx − hdg, s57d

wheres0/2 is the surface charge density and the distanceh
between the electrodes is small. The Fourier transform yields

r̃sk,vd = is0 sinskhd. s58d

In the limit h→0, s0→`, s0h→r0=const, Eq.s58d be-
comesr̃sk,vd= ikr0 or, equivalently,

r̃sx,vd = r0d8sxd. s59d

This should be compared to the charge density in Eq.s6d,
namely,

r̃sx,vd = r0dsxd. s60d

Therefore, if one makes the substitutionsẼ→−ikf̃ and r0

→ ikr0 in Eq. s11d, it follows that the solution for the electric
field due to an oscillating sheet charge and the solution for
the potential due to a dipole layer are equivalent, except for
a minus sign.

The important difference between the two solutions is
that the potential derived in Sec. VIII is an even function of
x whereas the potential in Gould’s problem is an odd func-
tion of x. Consequently, the solution of Gould’s problem is
not an appropriate model for the electrostatic waves gener-
ated by a plane electrode with an applied potential since, by
physical considerations, the correct solution must have even
symmetry.
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APPENDIX: DERIVATION OF EQ. „15…

In this appendix it is shown that the inverse Fourier
transform of Eq.s11d is given by Eq.s15d. Consider the
function 1/k which has the inverse Fourier transform
sgnsxd /2. This Fourier transform pair is denoted by

1

2
sgnsxd ↔ 1

k
. sA1d

The inverse Fourier transform of 1/k cannot be computed
using the definition of the Fourier transform in terms of an
integral. It only has meaning in the sense of the theory of
distributionsssee, for example, Ref. 25, Chap. IXd. Accept-
ing the correctness of Eq.sA1d, now write Eq.s11d in the
form

1

ikDskd
=

1

ik
F 1

Dskd
−

1

Ds0dG +
1

ikDs0d
sA2d

where the dependence onv has been omitted to focus atten-
tion on thek dependence. Applying the Fourier transform
operatorF to both sides of this equation and then using the
linearity property, one obtains

F−1F 1

ikDskdG = F−1H 1

ik
F 1

Dskd
−

1

Ds0dGJ
+ F−1F 1

ikDs0dG . sA3d

As indicated in the discussion following Eq.s39d, the first
term on the right-hand side of Eq.sA3d contains no singu-
larities and can be defined as an ordinary integral overk. The
singularity is contained in the second term on the right-hand
side which has an inverse Fourier transform given by Eq.
sA1d. Thus, the first and second terms on the right-hand side
of Eq. sA3d are equivalent to the near-field and far-field com-

ponents denoted byẼN and ẼF in Sec. VII, respectively.
Independently, it is shown in Sec. VII that the integral in

Eq. s15d is equal to the sum ofẼN and ẼF. Therefore, the
inverse Fourier transform in Eq.sA3d must be equal to the
integral in Eq.s15d This proves the desired result. In short,
according to the theory of distributions, the singularity which
occurs in the inverse Fourier transform of Eq.s11d is handled
correctly by using the Cauchy principle value to evaluate the
integral. The same recipe also produces the correct inverse
Fourier transform of 1/k given in Eq.sA1d.
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